Next steps

Now that you've had some hands-on experience with TimescaleDB, hopefully you can see how many of our powerful features can help you manage your time-series data while easily mining for deeper insights. 💥

To continue your exploration of TimescaleDB, here are some valuable next steps to help you on your way to becoming a time-series superhero.

Migrate data to TimescaleDB

One of the first things most developers want to do is look at the data they're currently working with in the database. There are a number of methods for importing data that you currently have, whether it exists in another database or a CSV file.

Look at our how-to guide on Migrating Data for more help and suggestions of where to start.

Visualize your data

Time-series data is perfectly suited for viewing with tools like Grafana, Tableau, and Power BI (to name a few). Once you can see trends and query for specific data features using relational data, a whole new world of insights begins to open up.

Check out our growing set of visualization tutorials, showing you how to become a Grafana Superhero and connect to other 3rd party visualization tools.

Connect to your data with code

While this may the century of big data, the power greatest power often happens in connected applications that help us ingest and provide value to users. Using time-series data effectively means you need to get your code connected and working as efficiently as possible.

See our growing list of language Quick Starts to get you up and running with TimescaleDB, including best practices.

Examine other sample datasets

Sometimes it's just easier to explore further by having access to additional datasets. We have you covered! 🙌

Have a look some of the other datasets we provide for you to dig deeper into time-series data and data analysis using TimescaleDB.

Found an issue on this page?

Report an issue!


Related Content